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SUMMARY 

This article briefly reviews the statistical model of overlap and reports results 
from its first application to a fully characterized experimental chromatogram in which 
the numbers of detectible components, singlet peaks, doublet peaks, and triplet peaks 
are known. The overall agreement between these numbers and their theoretically 
expected values, which were predicted by the model from the relative distribution of 
maxima in the chromatogram, is very good. Specifically, the absolute errors between 
the predicted and actual numbers are all less than or equal to three. 

INTRODUCTION 

This article reports results from an application of the statistical model of overlap 
(SMO) to an experimental multicomponent chromatogram containing known num- 
bers of detectible singlet and multiplet peaks. The SMO, proposed some years ago’, is 
a simple theory of peak overlap that rests on the assumption that the components of 
complex mixtures elute randomly from chromatographic columns or beds. In this case, 
the expected number of peaks in the chromatogram can be calculated from theory, if 
the number of detectible mixture components and the column peak capacity are 
known. Alternatively, and more importantly, the number of detectible mixture 
components can be estimated by a simple procedure reviewed below, if the number of 
peaks in the chromatogram and the peak capacity are fit as experimental data to the 
theory by least-squares methods. The basic validity of this procedure was confirmed by 
its extensive application to computer-generated chromatogramszW6. These applica- 
tions furthermore established criteria (which are restated below) by which one can 
evaluate the accuracy of the component-number estimate. The procedure has been 
applied to several gas and liquid chromatograms4~6~“, with results that are apparently 
consistent with those obtained from computer-generated chromatograms. This work 
is only one of many studies of peak overlap and its probability in chromatogramsgp16. 

One can furthermore estimate with the SMO the expected numbers of singlet, 
doublet, triplet, etc., peaks in the chromatogram, once the number of detectible 
components is known’. Because a fundamental objective of chromatography is to 
resolve mixture components into singlet peaks, the estimation of these numbers 
enables one to gauge quantitatively the overall efficiency of separation. 
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Perhaps the most significant implication of the SMO is the surprising severity of 
overlap expected, even in ultrahigh-resolution chromatogramsl. Specifically, the 
numbers of resolved peaks and singlet peaks are never expected to exceed 36.8 and 
18.4%, respectively, of the peak capacity. These predictions raise grave questions 
about the accuracy of component concentrations determined from chromatograms of 
complex mixtures and the feasibility of isolating select components from such 
mixtures. The possible overestimation of component concentrations in forensic and 
environmental mixtures is especially serious, as complex legal issues may be decided 
erroneously by failure to consider properly the likelihood of overlap. 

The reported applications of the SMO to experimental chromatograms have 
principally been diagnostic evaluations of partially characterized mixtures, in which 
the numbers of detectible components are unknown. No results have been reported 
from an application of the SMO to an experimental chromatogram in which the 
numbers of detectible components, singlet peaks, and multiplet peaks are known. The 
results from one such application are reported here, principally to enhance confidence 
in the model and the procedure reviewed below. The excellent agreement between 
experimental component and peak numbers and their predicted values should 
emphasize the basic statistical pitfalls one commonly encounters when resolving 
complex mixtures. 

THEORY 

The actual number m of single component-peaks (SCPs), each of which 
corresponds to a detected mixture component, in a complex chromatogram is 
unknown, because some of the SCPs overlap with one another. Only the statistically 
expected number ti of SCPs in the chromatogram can be estimated with the SMO; 
fortunately, in most cases, m z ti. When m is large [i.e., > 30 (4)] and the components 
are randomly distributed along the elution axis, the number p of peaks expected in the 
continuous region X of the chromatogram is related to ti by’ 

p = fg ,-Gn, = m e-3 (1) 

where x = %/nc is the component saturation of the chromatogram and n,, the peak 
capacity, is the maximum number of uniformly spaced SCPs separable in region X 

In eqn. 2, x0 is the span between adjacent SCPs resolved to the arbitrarily chosen 
resolution R:, and c is the standard deviation of any representative SCP in region X. 
Taking the logarithm of eqn. 1 and combining the result with eqn. 2, one obtains 

In p = In fi - tixoiX = In ti - */nc (3) 

Thus, a plot of In p vs. x0/X or l,‘n, is a line of slope -ti and intercept In ti. Two 
independent estimates of fi are consequently obtained, one (termed m,,) from the slope 
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and the other (termed Wlin) from the intercept. Although it is strictly incorrect to 
estimate independently these two ti values”, the requirement that msl should equal 
min, at least within statistical error, is one of several useful criteria by which to evaluate 
the accuracy of the ti estimate2--5. 

As noted in the introduction, one can also calculate from theory the expected 
numbers of singlet peaks s, doublet peaks d, triplet peaks t, and higher order multiplet 
peaks in the chromatogram. once ti is known. The first of these expected numbers arei 

d = fi e-2a (1 - e-a) WI 

t = g e-2a (1 - emz)2 (4c) 

The resolution & one chooses to define n,, and thus CI, clearly determines the 
numbers of peaks, singlets, and multiple& that one actually calculates from eqns. I and 
4a-c. One arbitrary but useful convention is to equate R: with 0.5, in which case peaks, 
singlets, and multiplets correspond to visually distinguishable chromatographic 
maxima2A. This convention will be adopted here. 

A common objective of chromatography is to resolve mixture components into 
singlet peaks of high purity. Usually the achievement of near-baseline resolution, 
characterized by R: = 1.5, between the SCP of interest and its adjacent neighbors is 
adequate for this task. In this case the relative component saturation x = 4oR@/X is 
three times greater than that based on R; = 0.5. The expected number $, of 
baseline-resolved singlets is consequently determined from eqn. 4a as 

where, as stated above, x is defined by K = 0.5. 
Several procedures, which differ only in the minimal resolution Rf that one 

requires between adjacent peaks, have been proposed to determine experimental peak 
numbers from chromatograms ‘z6 The procedure reviewed here permits one to . 
determine several effective peak numbers and to estimate ti from the relative positions 
of the chromatographic maxima in a single chromatogram5. Furthermore, it 
eliminates the need to determine the peak capacity n,, which is rigorously sample- 
dependent’ 6. For any arbitrarily chosen spacing x0, the number of spans between 
adjacent maxima that equal or exceed this spacing is equated to the experimental 
number p corresponding to that x0. (Throughout the text, the symbols p, s, d, t, etc., 
will be used to represent both theoretical and experimental quantities.) The inclusive 
span between the first and last maxima in the region is identified with the quantity X. 
The procedure is repeated with several different .x0 values and a data set (x0/X, In p) is 
generated. These arbitrary changes in x0 in effect correspond to arbitrary changes in 
the resolution & that formally resolves clusters of SCPs into peaks, as rigorously 
defined by theory2; these resultant peaks, however, have little in common with peaks in 
any traditional sense (e.g., chromatographic maxima). When x0 > 2~r, the number 
p increases with decreasing x0. When x0 < 2r7 (i.e., when R: -c 0.5), however, p equals 
one less than the number pm of chromatographic maxima, because adjacent SCPs 
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cannot be visually resolved when Rf < 0.5. These data are excluded from the data set, 
which is then fit to eqn. 3 by least-squares methods. Theoretical weights can be 
assigned to each point in the fit to estimate the uncertainties in rnsl and mi”. Details of 
the method5 and previously reported applications’,’ are given elsewhere. 

EXPERIMENTAL PROCEDURES 

No original chromatography is reported here. Fig. 1 (reproduced with permis- 
sion) is a high-resolution chromatogram of a composite mixture of 113 polynuclear 
aromatic hydrocarbon (PAH) standards first reported by Lee et al.18 and kindly 
brought to the author’s attention by M. Lee. These standards were fractionated on a 12 
m x 0.29 mm I.D. glass capillary, which was coated with a 0.34~pm film of SE-52 and 
temperature-programmed from 50 to 250°C at 2”C/min. The helium carrier flow-rate 
lay between I and 3 ml/min. 

VXV 
Fig. I Chromatogram of 113 PAH standards. Analytical conditions: column, 12 m x 0.29 mm I.D. glass 

capillary coated with a 0.34.pm film of SE-52; temperature program, 50-250°C at Z”C!;min; carrier, helium; 
flow-rate, between I and 3 ml/min. Reprinted with permission (ref. 18). 

Each PAH standard was chromatographed several times to determine reliably 
a retention index”. Thus, the retention times of all standards were both accurately and 
precisely known, enabling the authors to identify the chromatographic maxima in Fig. 
1 as singlets or multiplets. Each maxima is associated with one, two, or three numbers; 
singlets are associated with a single number (e.g., 3), doublets with two numbers (e.g., 
12-13) and triplets with three numbers (e.g., 3637-38). These numbers originally 
referred one to a table in reference 18, in which the identities of the mixture 
components corresponding to the numbered maxima are reported. (The maxima in the 
reprinted figure were actually renumbered by the author; the numbers reported in 
reference 18 are somewhat difficult to read, unless the figure occupies a full journal 
page, as it does in the reference.) A total of 92 maxima, comprised of 75 singlets, 13 
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doublets, and 4 triplets, are numbered in the chromatogram. Of the 7.5 singlets, 36 are 
also baseline-resolved, as judged by visual inspection. Four of these latter singlet types 
(44,48, 49, and 54) actually reside on the tailing edges of the two maxima, 41 and 52. 
They were nevertheless counted as baseline-resolved singlets, because the tailing is 
highly unrepresentative of the chromatogram as a whole. These various singlet and 
multiplet numbers are reported in Table I. At least ten unnumbered maxima are also 
present in the chromatogram; their influence on the analysis is addressed below. 

TABLE I 

NUMBERS OF PEAK, SINGLET. AND MULTIPLET MAXIMA IN CHROMATOGRAM IN FIG. 1 

Numbers in brackets identify numbered maxima in Fig. 1, 
--- 

Detectable components: I I3 

Detectable (numbered) peak maxma: 92 

Singlets s: 75 

[3,4,5,7, IO, l5,20,23,25,39,40,41.44,48.49,52,54, 58, 62,65.67,68,72,73,74,75,81,82,85,87,88,96, 
104, 107, 109,110, Ill, 112. 113. 116. 117, 118, 121, 123, 125,128, 129, 134, 138, 143, 144, 147,148, 154,155, 
157, 159, 180, 184, 185, 186, 188. 189, 191, 195, 196, 197, 198, 199, 200,202, 205, 206, 207,208] 

Doublets d: 13 

[12Z13, 63-64, 90-92, 93-94. 126-127, 140-141, 150-151, 152-153, 161-162, 169-170, 178-179, 192-193, 
203-2041 

Triplets t: 4 

[36-37-38, 98-99-100, 164165.-166. 172~173~175] 

Baseline-resolved singlets sb: 36 

[3,4,5,7, 10, 15,20,44,48,49. 52. 54. 58. 62,81,82,85, 104, 134, 138, 148, 155, 157,159, 184,185, 186,191, 
195, 196, 197, 198, 199, 200, 202, 20X] 

__ 

ANALYTICAL PROCEDURES 

An enlarged copy of the chromatogram in Fig. 1 was prepared by careful 
xerography. The sequential relative positions of the numbered chromatographic 
maxima (which are analogous to relative retention times or volumes) were measured to 
a resolution of 0.005 in. with a True Grid 1011 Digitizer (Houston Instruments, 
Austin, TX, U.S.A.) and stored on an Apple TTe microcomputer. The digitization 
process was repeated to verify that the maxima positions could be determined 
reproducibly; the corresponding maxima positions in the two sets of numbers differed 
at most by 0.01 in. The positions of the unnumbered maxima were not digitized. 
Because these maxima are more or less randomly dispersed throughout the chro- 
matogram, this small bias negligibly affects the analysis, as the results below will show. 

The span X indicated in Fig. 1 was estimated as the difference, 10.100 in., 
between the first and last maxima. The data set (Q/X, In p) was then determined as 
described above. No value of p < 16 was considered, because of shortcomings in the 
SMO’s development5. The data set was then graphed and inspected. 
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Only a subset ofthese data were fit to eqn. 3. Because the relative positions of any 
two adjacent maxima were both determined with a digitization error of 0.005 in., the 
relative error in small x0 values is considerable. If one demands that this relative error 
be less than 0.1, then 

ox0 _ J(O.O05)2 + (0.005)2 

x0 x0 
< 0.1 (6) 

where ox0 is the standard deviation of x0. The span x0 must exceed 0.07 in. to satisfy 
this inequality. To minimize procedural errors, therefore, no data for which 
X*/X < 0.07/10.100 Z 0.007 were fit to eqn. 3. These data include those for which x0 
< 20, which would normally be excluded anyway (see above). 

The remaining data were lit to eqn. 3 by the theory of least squares”. The details 
of the tit are presented in the appendix. 

RESULTS AND DISCUSSION 

As earlier work has demonstrated, a number of quantitative criteria must be 
satisfied, if one is to calculate fi accurately (i.e., to within 10%) by the procedure 
detailed above. The first, as noted earlier, is that YM,, z min. Secondly, the relative 
saturation a of the chromatogrdm must be less than 0.5, when R; = 0.5 (ref. 5). Finally, 
the distribution of distances between adjacent chromatographic maxima must be 
exponential, when x0 > 20 (ref. 5). One quantitative test for the existence of this 
distribution is the value of the reduced chi-square statistic xy’, defined by eqn. Al5 in 
the appendix, which is a measure of the goodness of lit of the data set (x0/X, In p) to 
eqn. 3. The test is inherently statistical, but when xt < 1, the distances are most likely 
exponentially distributed”. 

Fig. 2 is the plot of In p VS. x0/X generated by the procedures reported in the 
appendix. The solid line is a weighted least-squares fit of the indicated points to eqn. 3. 
As one would anticipate, these points are randomly scattered about the tit. The peak 
numbers for which 2a/X < xO.iX < 0.007, however, are systematically smaller than 
predicted by this fit, perhaps because of digitization error. 

Table II reports, to the nearest whole number, the numbers of singlet peaks s, 
doublet peaks d, triplet peaks I, baseline-resolved singlet peaks +,, and components nz,i, 
and Gi, which were calculated as detailed in the appendix. Also reported, to the nearest 
whole number, are the standard deviations CJ~, dd, crt, gs,, csl, Gin, and am of these 

respective numbers, as evaluated from equations in the appendix. The saturation a of 
the chromatogram, and the standard deviation CJ~ of the saturation, are also tabulated, 
for R: = 0.5. The reported standard deviations are the statistical uncertainties in the 
estimates derived from the plot of In p vs. x0/X. 

In examining the data reported in Table II, one observes that nz,i z min. A simple 
Student’s t-test indicates that these numbers are statistically equivalent. In addition, 
a = 0.174, which is much less than the a = 0.5 limit above which rii cannot be reliably 
estimated. The reduced chi-square statistic for the fit is xv” = 1.05, which suggests that 
the distances between adjacent maxima are indeed exponentially distributed. All the 
quantitative prerequisites to the calculation of accurate ti values stated above are 
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Fig. 2. Plot of Inp W. s,/Xderived from the chromatogram in Fig. I. Solid line is least-squares fit of indicated 

points to eqn. 3. 

consequently satisfied, and one would thus expect these predicted numbers to be fairly 
good estimates. 

The predictions reported in Table II are, in fact, in very good agreement with the 
experimental peak and component numbers reported in Table I and parenthetically in 
Table II. Specifically, the experimental numbers m, s, d, and & all lie within, and 
usually well within, one standard deviation, and the number t within two smndard 
deviations, of the predicted values. The absolute errors between the predicted and 
actual numbers are very small, and are all less than or equal to three. 

TABLE 11 

RESULTS FROM SMO APPLICATION TO CHROMATOGRAM IN FIG. 1 

Expected numbers (standard deviations) of components m,, (us,) and mi, (tin) from slope and intercept, 

respectively, of eqn. 3, SCPs 6 (o;), singlets s (o.), baseline-resolved singlets ,sb (0~3, doublets d ((id), and 
triplets t (oJ are reported to the nearest whole number. Saturation a and standard deviation LT, are reported 

to three significant figures. Experimental component and peak numbers are reported in parentheses below 
the theoretical results. 

106 * I 115 * 9 110 + 6 0.174 & 0.051 77 + 4 12 * 3 2+1 38 i IO 

(-) (-) (113) (-) (75) (13) (4) (36) 
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Some interesting insights are obtained by examining the fraction of the peak 
capacity n, utilized in this chromatogram to resolve peaks and singlets. Because the 
a reported in Table II is defined with respect to chromatographic maxima (i.e., with 
respect to Rz = 0.5), the approximate peak capacity n, of the chromatogram, in terms 
of maxima, is m/a 25 113/O. 174 z 649 components. In other words, 649 uniformly 
spaced maxima (of equal amplitude) could theoretically be resolved in space X, when 
R: = 0.5. Only 92 maxima are actually resolved in this space, however, and the fraction 
of n, utilized is only pm/q = 92/649 = 0.142. The fraction of n, utilized in resolving 
singlet maxima is somewhat less, s/n, = 75/649 = 0.116. Thesep,/n, and s/n, ratios are 
considerably smaller than their respective theoretical upper limits, 0.368 and 0.184r. 
The utilization of the available peak capacity for maxima separation is clearly far from 
optimized. 

As shown by eqn. 2, the numerical value of M, is determined by the resolution 
R: that one chooses to discriminate between peaks. The peak capacity of any 
chromatogram, in terms of baseline-resolved peaks (defined by R: = 1.5), is 
consequently three times smaller than that based on chromatographic maxima 
(defined by Rz = 0.5). Hence, the approximate baseline-resolved peak capacity of the 
chromatogram is 649/3 z 216. The fraction of this capacity utilized in separating 
baseline-resolved singlets, s&rC, is 36’2 16 z 0.167. This ratio is only slightly less than 
the largest peak-capacity fraction, 0.184, that can be used for this purpose. This 
chromatogram therefore represents a highly optimal utilization of the available peak 
capacity for the baseline resolution of randomly spaced singlet peaks. 

The peak and component numbers presented above clearly aftirm that the SMO 
accounts quantitatively for peak overlap in this chromatogram. This analysis 
furthermore supports the hypothesis that the SMO accounts for overlap in many 
chromatograms, when certain well established criteria are met. As observed elsewhere, 
however, the SMO does not apply to all high-resolution chromatograms, especially 
when the mixture components exhibit order at the molecular level’. Furthermore, the 
agreement between experiment and theory, under one set of experimental conditions, 
does not imply that agreement will also be attained if the conditions are radically 
changed. For example, the careful optimization of multicomponent separations can, in 
some cases, introduce order and obviate the predictions of the SM013*15. Other 
optimization procedures yield chromatograms in which peak overlap remains 
consistent with the SM06. Each case must be addressed individually. 

In conclusion, I note that additional studies of this type would provide useful 
data to test the reliability and universality of the procedures reviewed here or described 
elsewhere. A large set of experimental data is essential to the thorough testing and 
characterization of the SMO. because the effects on its predictions of many 
chromatographic variables, e.g.. mixture composition, mobile- and stationary-phase 
composition, and mobile-phase programming, cannot be deduced simply from 
analyses of computer-generated chromatograms. Because computer simulations 
furthermore are dismissed by some as idealistic approaches to the study of real-world 
problems, additional experimental confirmations of the SMO, and other theories of 
peak overlap, would build a solid experimental foundation on which to rest the 
sobering conclusions deduced from these theories. 
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APPENDIX 

Least-squares fit ef experimental data to eqn. 3 
The appropriate subset of the data set (x0/X, In p) was tit to eqn. 3, as detailed 

below, to calculate nz,r and mi, and their respective standard deviations, crSl and oin. 
These numbers were evaluated from standard formulae for the least-squares fit of data 
to a straight linel’ 

i=l i=l 

j 
1 

OS] = - 
A c 

wi 

i=l 

i=l i=l 

(A3) 

(A41 

x0. 2 Wi _ 
i il x CA3 

i= 1 

In eqns. Al-AS,jis the number of data points in the fit (in this case, 23) and Wi, x0,, and 
pi are the ith values of the theoretical weight W, arbitrary spacing x0, and experimental 
number p. The weight w of each point was calculated as5 

” = f(a’) + (1 _ a’)* epza’ 

where 

WI 
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and 

a’ = rnxo/X (-48) 

Because the weights M; depend on the unknown quantity ti (see eqns. A6-AS), the data 
set was fit iteratively to eqns. Al-A8 until the calculated results varied negligibly 
between iterations. Specifically, the arbitrary weight w = 1 was initially assigned to all 
points, and the unknowns msl, Min$ csl and Gin were then evaluated from eqns. Al-A5. 
The statistical component number 6 was then approximated as 

A series of new weights M! was then computed from eqns. A&A8 with the fi value 
estimated from eqn. A9, and the unknowns msi, min, crsl, Gin, and ti were again 
evaluated as detailed above. This iterative procedure was repeated until mslr min, usI, 
and oin varied by less than 0.001% between successive iterations. The weighted 
standard deviation G- of fi was then estimated from these data as m 

cm = (asp + ai,2)- 1’2 C-410) 

The numbers m,r, win, crsl, oin, KG, and nrn reported in Table II are the converged values 

determined as described above. 
The relative saturation I of the chromatogram in Fig. 1 was then calculated from 

eqn. 1 as 

CI = -In (P&i) (Al 1) 

wherep = pm = 92, the number of chromatographic maxima, and fi is given by eqn. 
A9. With this choice, peaks, singlets, and multiplets are all identified with chro- 
matographic maxima and R6 z 0.52-4. 

The expected numbers of singlet, doublet, and triplet peaks were then calculated 
from 1% (eqn. A9), SI (eqn. Al l), and eqns. 4a-c. The standard deviations of these n-lets 
were estimated from a propagation of errors asl9 

2 
0n-let = e -” (1 - e-Y1 li 1 _ (n - 1) e-’ 

1 - e-’ H 

Ii2 ~~ 
m (Al21 

where n is the number of SCPs per maxima (e.g., n = 2 for a doublet). The standard 
deviations of the singlets, doublet d, and triplet t peak numbers are designated cs, (Td, 
and ot, respectively, in Table II. 

The number s,, of baseline-resolved peaks was calculated from 61 (eqn. A9), 
a (eqn. All), and eqn. 5. The standard deviation osb of the number &, of 
baseline-resolved singlets was determined from a propagation of error to be 

(Al31 
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The standard deviation a3 of parameter a, eqn. Al 1, was calculated as 

51 

Gi 
0, = y 

m 
(A14) 

In eqns. Al2-A14, Fr, G;, and a are given by eqns. A9-All, respectively. 
A reduced chi-square statistic xu” was calculated as” 

j 

Xu’ = c Wi[ln (FE ez’) - In pJ2 

j-2 (Al?) 

i=l 

where W, a’, and ti are given by eqns. A6, A%, and A9, respectively. The value of 2: is 
a measure of the goodness of fit of the data set (x0/X, In p) to eqn. 3. 

LIST OF SYMBOLS 

d 

f(ff’> 
m 

md 

mi, 

m 
n, 
P 

Pm 
R: 
s 

sb 

statistically expected or experimental number of doublet peaks 
function defined by eqn. A7 
number of detectible components in chromatogram 
component number estimated from slope of eqn. 3 
component number estimated from intercept of eqn. 3 
statistically expected number of detectible components in chromatogram 
peak capacity 
statistically expected number of peaks in chromatogram, or experimental 
number of spans between adjacent maxima greater than x0 
number of chromatographic maxima 
resolution that resolves adjacent SCPs into separate peaks 
statistically expected or experimental number of singlet peaks 
statistically expected or experimental number of baseline-resolved singlet 
peaks 
single-component peaks 
statistically expected or experimental number of triplet peaks 
statistical weight of point in In p w. x0/X plot 
arbitrary spacing 
span between first and last chromatographic maxima 
@r/n= 
naxo/x 
function defined by eqn. A5 
standard deviation of SCP 
standard deviation of doublet number d 
standard deviation of mi,, 
standard deviation of G 
standard deviation of n-let peak number 
standard deviation of singlet number s 
standard deviation of baseline-resolved singlet number &, 
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OS1 standard deviation of msl 

fir standard deviation of triplet number t 

g% uncertainty in x0 due to digitization error 
6, standard deviation of r 

2 
x0 reduced chi-square statistic 
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